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synopsis 
A method for the constrained optimization of the filler content in polyester resin was 

demonstrated. The fillers investigated included marble, clay, pecan shell flour, and 
hollow microspheres in various concentrations. The method of optimization included 
an experimental design to generate data and a polynomial regression analysis to  deter- 
mine the mechanical property constraint functions. The constraints were well ap- 
proximated by linear functions, and iinear programming was used to  find optimum com- 
positions for several possible applications. 

INTRODUCTION 
Fillers may be used in a resin as an extender or to provide improvements 

in certain properties. In  any case, one goal will always be important, i.e., 
to minimize the cost of the filled resin to be used for any particular applica- 
tion. As shown in Table I, most fillers are less expensive than the resin dis- 
placed. Thus, the cost of the filled resin decreases continuously with in- 
creasing filler content, and the goal of minimizing cost becomes synonomous 
with the goal of maximizing filler content. However, fillers affect the prop- 

TABLE I 
Density and Costs of Resins and Fillers 

Material Density, g/ml Cost,, $/lb Cost, $/liter 

Polyester resin 
I.G. 101 Microballoons 
Nut shell flour 
Marble 

Gamma-Sperse 255 
RO-40 
P4-40 

Hydrite 10 
Hydrite Flat D 
Hydrite MP 

Clay 

1.21 
0.34 
1.30 

2.71 
2.71 
2.71 

2.58 
2.58 
2.58 

0.25 
0.69 
0.04 

0.012 
0.005 
0.005 

0.026 
0.014 
0.015 

0.666 
0.517 
0.114 

0.072 
0.030 
0.030 

0.148 
0.080 
0.085 

* Present address: Ashland Oil Company, Ashland, Kentucky. 
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erties of the resin system, and the necessity of maintaining these properties 
within certain bounds limits the maximum amount of filler that can be 
added. This complicates the problem considerably. Furthermore, the 
complexity of the problem increases rapidly as the number of variables, i.e., 
types of filler, resin composition, cure conditions, etc., and the number of 
constraining properties increase. 

In  general, such a problem can be solved most efficiently if treated as a 
constrained optimization. As an example of the utility of this approach, 
the problem of formulating a mixed filler system for a polyester resin to 
yield a composite at minimum cost with mechanical properties held within 
certain bounds was investigated. 

STATEMENT OF THE PROBLEM 

The problem can be stated in general terms as follows: 
n 

minimize C = bo + b a r  
i = l  

subject to 

j = 1, . . ., m and i # k (3) 

where C = objective function, cost per volume of composite; xf = volume 
fraction of filler i; bo = resin cost, cost per volume; b ,  = cost reduction 
factor for filler i, cost per volume; ao, air, dir,  f i r  = coefficients of regression 
equation for component i and property j; and b,  = constraint for property 
j .  

Solution of this general problem requires application of nonlinear opti- 
mization techniques. The mathematical solution of the problem can be 
simplified if the second order and interaction terms in the constraint equa- 
tions are all negligible, because linear programming can then be used. This 
does not simplify the experimental problem, however, since it must be shown 
that these terms can be ignored. I n  either case, the approach to the prob- 
lem and the end result are the same. 

SELECTION OF VARIABLES AND CONSTRAINTS 

The constraints to be imposed depend upon the end use of the composite, 
but any type and number of properties could be specified as constraints. 
Since the mechanical properties and density of a filled polyester must often 
be considered, the constraints selected for this problem were tensile strength, 
secant modulus, flexural strength, and density. 
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The choice of resin and fillers depends upon cost, availability, properties 
desired, and the individual effects of the fillers on the properties of interest. 
For maximum utility, a semiflexible polyester resin consisting of 10 wt-% 
Cyanamid EPX-187-3 and 90 wt-% Cyanamid EPX-279-1, with 25 pph 
styrene added, was used. From qualitative considerations of an earlier 
study,' four types of fillers were chosen for this work. These were clay, mar- 
ble, pecan shell flour, and Emerson and Cumings I.G. 101 microballoons. 
The microballoons were chosen primarily for density reduction and the oth- 
ers, primarily to reduce cost. Of course, marble, clay, and shell flour yield 
composites of different appearances. The average particle sizes for each 
filler were chosen arbitrarily to yield a mixed filler of very wide particle size 
distribution with high loadings of each type. 

OBJECTIVE FUNCTION 

Since it was shown in our earlier study' that the volumes of resin and the 
selected fillers are additive, the coefficients for the objective function (the 
cost per unit volume of the filled resin) can be calculated from the cost of 
resin and fillers. For this case, the objective function is 

C = 0.666 - 0.636X1 - 0.586X2 - O.552X3 - 0.149X4 (4) 
where C = cost per volume of the composite, $/liter; and X1, Xz, X3, X4 = 
volume fractions of marble, clay, pecan shell flour, and I.G. 101 microbal- 
loons, respectively. 

CONSTRAINT FUNCTIONS 

It is also necessary to formulate functions to describe the relation between 
the selected constraints and the independent variables of the problem. 
Since volumes are additive, a density function can be calculated easily from 
the densities given in Table I. For this problem, the density constraint 
function is 

D = 1.21 + 1.50XI + 1.37XZ + O.OgX3 - 0.87X4 (5) 

where D = composite density, g/cm3. 
The functions for the remaining constraints-tensile strength, secant 

modulus, and flexural strength-must be generated from experimental data 
taken to describe the response of the mechanical properties with respect to 
the levels of the independent variables. The most efficient method for col- 
lecting the required data is by following a statistical experimental design. 
Also, the data must be taken for at least three levels of each variable to de- 
termine curvature for a second-order model. 

Experimental Design and Data 

The levels of the filler contents (the independent variables) are specified 
for each experimental formulation by an experimental design. If a com- 
plete factorial design for four variables at three levels were used, 34, or 81 
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formulations would have to be prepared and tested for each property. The 
number of formulations could be reduced by compounding responses or by 
using an incomplete design. However, the loss of information resulting 
from the use of confounded or incomplete factorial design could introduce 
uncertainty into the optimization. 

If precision of measurement of dependent variables is high, which it is in 
this study, experimental desigtls can be used that are more efficient than the 
complete factorial design without loss of information. One of these, the ro- 
tatable central composite design of Box and Wilson,2 was selected for this 
study. The Box-Wilson design is basically a two-level factorial design aug- 
mented by additional axial points and a replicated center point. For four 
variables, this design yields a five-level experiment requiring only 27 formu- 
lations, including three replicates of the center point. The only loss of in- 
formation is that experimental error can be estimated for the center point 
only, but this is not critical for our purposes. 

TABLE I1 
Coded Values for a Four-Variable Box-Wilson Design 

Variable Experi- 
ment 
no. x1 XS Xs X4 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2B 
26 
27 

2 
-2 

0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

0 
0 
0 

0 
0 
2 

-2 
0 
0 
0 
0 

1 
1 
1 
1 

-1 
-1 
-1 
-1 

1 
1 
1 
1 

-1 
-1 
-1 
-1 

0 
0 
0 

0 
0 
0 
0 
2 

-2 
0 
0 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

1 
1 

-1 
-1 

0 
0 
0 

0 
0 
0 
0 
0 
0 
2 

-2 

1 
-1 

1 
-1 
-1 
-1 

1 
-1 

1 
-1 

1 
-1 

1 
-1 

1 
-1 

0 
0 
0 

1 
axial 

points 

1 

factorial 1 
points 

J 
1 

J 

center 
points 
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The design for four variables in terms of coded variables is shown in Table 
11. The range of each variable was set arbitrarily with the limitation that 
the maximum total volume fraction of fillers could not exceed 0.5. At 
higher loadings, it is dfficult to blend resin and fillers uniformly or to mold 
uniform samples. On this basis, actual values for the concentrations of in- 
dividual fillers in each formulation were calculated to conform to the design. 
The formulations used in the designed experiment are given in Table 111. 

TABLE I11 
Composition of Samples for Box-Wilson Experimental Design 

Microballoons 
Marble (RO-40), Clay (Hydrite Nut shell flour (I.G. lOl), Total filler, 

vol-o/, flat D), vol-% (100 P), vol-% vol-% vol-% 

14 
0 
7 
7 
7 

7 
7 
7 
10.5 
10.5 

10.5 
10.5 
10.5 
10.5 
10.5 

10.5 
3.5 
3.5 
3.5 
3.5 

3.5 
3.5 
3.5 
3.5 
7 

7 
7 

~ 

6 
6 
12 
0 
6 

6 
6 
6 
9 
9 

9 
9 
3 
3 
3 

3 
9 
9 
9 
9 

3 
3 
3 
3 
6 

6 
6 

9 
9 
9 
0 
13 

5 
9 
9 
11 
11 

7 
7 
11 
11 
7 

7 
11 
11 
7 
7 

11 
11 
7 
7 
9 

9 
9 

10 
10 
10 
10 
10 

10 
20 
0 
15 
5 

15 
5 
15 
5 
15 

5 
15 
5 
15 
5 

15 
5 
15 
5 
10 

10 
10 

39 
25 
38 
26 
36 

28 
42 
22 
45.5 
35.5 

41.5 
31.5 
39.5 
29.5 
35.5 

28.5 
38.5 
28.5 
34.5 
24:5 

32.5 
22.5 
28.5 
18.5 
32 

32 
32 

Test formulations were prepared and cured according to the procedure de- 
scribed earlier.' Samples of each formulation were then tested to determine 
tensile and flexural properties by methods described in our previous article. 
The tensile strength, flexural strength and secant modulus for each formula- 
tion are given in Table IV. 
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TABLE I V  
Properties of Experimental Samples for Optimization 

Secant 
Tensile Flexural modulus,b 

cost, Density, strength, strength, (lb/in.2) 
Sample no.* $/liter g/ml lb/in.2 lb/in.2 x 103 

1 0.478 1.42 2680 5870 236 
2 0.567 1.21 2710 7050 174 
3 0.487 1.40 2770 5920 244 
4 0.511 1.24 2510 6970 168 
.5 0.500 1.32 2820 6330 227 
6 0.544 1.31 2650 6780 200 
7 0.507 1.23 2470 5700 222 
8 0.537 1.40 3180 8.520 201 
9 0.464 1.37 2.580 5250 258 

10 0.479 1.46 3240 7130 254 
11 0.486 1.37 2720 6170 257 
12 0.501 1.45 3140 7140 243 
13 0.499 1.29 2480 ,5770 220 
14 0.514 1.38 3180 7790 233 
15 0.521 1.28 2440 5990 205 
16 0.536 1.37 2880 7690 192 
17 0.508 1.27 2500 .5480 216 
18 0.523 1.35 2940 7600 205 
19 0.531 1.26 2440 5980 189 
20 0.545 1.37 2960 7880 203 
21 0.544 1.18 2350 5920 169 
22 0.599 1.27 2860 7680 137 
23 0.566 1.18 2340 6250 173 
24 0.581 1.27 2810 8300 175 
25 0.521 1.32 2740 6410 210 
26 0.521 1.32 2730 6890 215 
27 0.521 1.32 2700 6820 218 

resin 0.666 1.21 2520 8240 97 
Unfilled 

* The same sample numbering system is used in Tables 11,111, and IV. 
Ratio of stress to strain at  1% strain. 

Regression Analysis 
Constraint functions were generated by applying polynomial regression 

analysis to the data. A Biomedical Computer Program* and an IBM 360 
computer were used for the analysis. Four mathematical models were fitted 
to each set of data. These models were the following: 

I. 
i # k  

n n 

i = l  i = l  
11. y = a0 + c afxf  + c biz? (7) 

n n 

i#k 
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IV. 
n 

i = l  
y = a0 + c u p ,  (9) 

By applying standard F-statistics, all of the above models were shown to 
fit the data with a 99% confidence interval. An indication of the relative 
quality of fit of the models to the data is given by the range of residuals (the 
sum of the absolute values of the largest positive and negative differences be- 
tween observed and calculated values) for the four models. The ranges of 
residuals for the models are given in Table V. 

TABLE V 
Regression Range of Residuals 

Model 

Tensile Fiexurai 
strength, Secant modulus, strength, 

lb/in.2 lb/in.2 lb/in.2 

I. Second-order 
polynomial 263 41,877 651 

quadratic terms 371 41,880 1,041 
111. Linear and pure 

quadratic terms 337 52,753 868 
IV. Linear model 371 .i2,752 1,024 

11. Linear and mixed 

As should be expected, the full second-order model (model I) gave the 
lowest range of residuals ; however, the improvement, over the linear model 
(model IV) was not great, and both models yielded satisfactory confidence 
limits for the regressions. Since optimization is much more difficult if sec- 
ond-order terms are retained, the linear model was selected for further 
analysis. The constraint functions obtained by linear regression of the 
d t  a a are 

UT = 2,802 + 1,667X1 + 2,361X2 + 1,542X3 - 4,65OX4 

up = 9,889 - 6,324X1 - 5,650X~ - 9,317X3 - 15,839X4 
(10) 

(11) 

(12) E = 98,696 + 617,878Xi + 656,910X2 + 227,000X3 + 72,488X4 

where uT = tensile strength, psi; = flexural strength, psi; E = secant 
modulus, psi; and Xl, X,, X3, X4 = volume fractions of marble, clay, pecan 
shell flour, and I.G. 101 microballoons, respectively. 

OPTIMIZATION 

Since the mechanical property constraints can be expressed as linear func- 
tions of the fractions of individual fillers, the optimum (minimum cost) for 
any set of constraints can be located by linear programming. Restated, our 
optimization problem is now 

n 

i= 1 
minimize C = b, + bixi  (13) 

subject to 
2 1  2 0 (14) 
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and 

This problem can be solved for unique optimum values easily, and an IBM 
program was used to locate example optimum solutions with an IBM 360 
computer. 

Examples 

To demonstrate the power of using an optimization approach for formula- 
tion, optimum formulations were determined for several sets of constraint 
limits that might correspond to quite differeht applications. The applica- 
tions considered were a general molding application, a wood simulation 
application, a marble simulation application with density restrictions, and 
a marble simulation application without density restrictions. 

For a general moding formulation, the constraints imposed were D 5 
1.35 g/cc, up 5 1512 psi (60% of up of resin), uF 2. 6588 psi (80% of uF of 
resin), and E 5 242.5 X lo3 psi (250% of E of resin). The optimum formu- 
lation determined was X I  (marble) = 0. X 2  (clay) = 0,082, X 3  (shell flour) 
= 0.304, X 4  (microballoons) = 0, which gave a cost per unit volume of 45&/ 
liter (a reduction of 21.6#/liter from the resin cost of 66.64#/liter). The 
active constraints for the optimum were density and flexural strength. 
Therefore, if a cheaper formulation is needed, the density or flexural 
strength or both constraints must be relaxed. 

For a wood simulation application, the constraints imposed were D 5 
1.10 g/cc, up 2 1,512 psi (60% of UT of resin), uF 2. 4,940 psi (60% of uF of 
resin), and E I 242.5 X lo3 psi (250% of E of resin). For this case, the 
optimum formulation determined was X I  = 0, X 2  = 0, X3 = 0.156, and X 4  
= 0.143. The formulation cost was 55.9#/liter (a reduction of 10.7#/liter). 
The active constraints were again density and flexural strength. 

If a cheaper formulation is desired, one of these constraints must be re- 
laxed. Since low density is desirable, the flexural limit should be relaxed. 
If this is done, then more shell flour and microballoons can be added. As an 
illustration, suppose that the flexural strength constraint is relaxed to 3290 
psi. In this case, the optimum formulation for wood simulation is X I  = 
0, X 2  = 0, X3 = 0.359, X 4  = 0.164, and the formulation cost becomes 
44.4#/liter (a reduction of 22.2g!/liter). 

Thirdly, consider optimization for a simulated stone application in which 
density must be restricted. For this case, the following constraints are im- 
posed: D 5 1.50 g/cc, uT 2 1,512 psi, uF 2 4,940 psi, and E 5 242.5 X lo3 
psi. The optimum formulation is X1 = 0.115, X2 = 0, X3 = 0.320, X4 = 0. 
The cost of the formulation is 41.6#/liter,. and the active constraints are 
flexural strength and secant modulus. 

Since the third case calls for only a 43.5 vol-% filler loading, a cheaper 
formulation could be obtained if the active constraints were relaxed. Ex- 
amining the constraint equations, we see that marble has a smaller negative 
effect on flexural strength than shell flour and a larger positive effect on se- 
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cant modulus. Further, we note that density may become an active con- 
straint if we attempt to replace shell flour with marble. Since neither of 
these properties is too important for stone simulation, a much cheaper for- 
mulation would be obtained if these constraints were eliminated. There- 
fore, consider the constraints uT 2 1512 psi and up 2 4940 psi. For this 
case, the optimum formulation is XI = 0.708, X z  = 0.10, X 3  = 0, and X4 = 
0, at a cost of 15.8$/liter. 

This serves to show the effect of relaxing a possibly unnecessary con- 
straint, but it also illustrates what can happen if an important physical ef- 
fect is ignored. The optimization has led to an unrealistic solution-an im- 
possible filler loading of 81 vol-’%-because a constraint for maximum load- 
ing was not replaced on the solution. From the experimental tests, it is 
known that the maximum filler loading possible is about 55 vol-%. Sup- 
pose the optimum is recalculated for the constraints uT > 1512 psi, > 
4940 psi, and loading = Zx, 5 0.55. For this case, the optimum is XI = 
0.55, XZ = 0, X, = 0, X4 = 0, giving a formulation cost of 31.6#/liter (a 
reduction of 35#/liter), and the only active constraint is the total filler 
loading. 

DISCUSSION 
The examples serve to show the power of the optimization approach for 

filler formulation. It should be emphasized that this approach could be ex- 
pected to work just as well if the constraint equations were nonlinear; the 
optimization would just be more complicated. Therefore, the approach 
does not depend upon the applicability of linear programming. Further, 
the study was not meant to be exhaustive. Thus, constraints such as im- 
pact strength, hardness, viscosity, and gloss and variables such as filler par- 
ticle size and resin composition were not considered. 

To include additional constraints is not difficult; this only requires mea- 
suring more dependent variables for the formulations specified by the 
experimental design. For example, hardness and gloss could be included 
by measuring these properties for pieces made for other tests. In fact, 
total loading was added as a constraint in one example. Introduction of 
new variables is much more difficult. This requires modification of the ex- 
perimental design and investigation of additional points, followed by reeval- 
uation of the constraint equations. The power of the method is undeniable. 
In this example study, low-cost formulations have been determined for a 
range of applications that includes wood and stone simulation, and the prop- 
erties can be estimated approximately for each optimum formulation from 
the empirical relations. 

It is interesting to note that no more than two fillers are specified for any 
one application, even though four were used in the experimental work, and 
that the optimization automatically specified the best fillers as well as the 
filler concentrations. Equally important is the direction provided for fu- 
ture efforts. The active constraints are enumerated by the optimization, 
and attention is focused on these. Work can then be directed toward better 
definition of the active constraint for a particular application, or toward 
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substitution of a more appropriate filler for the one that has the most detri- 
mental effect on the constraint of interest. Consider the formulation for 
wood simulation. The active constraints are density and flexural strength, 
and the density constraint cannot be relaxed. Therefore, a low-density 
filler must be included, but it has a very detrimental effect on flexural 
strength. Thus, we are led directly to a reconsideration of the flexural 
strength constraint and a search for a low-density filler that has less effect 
on the flexural strength. Finally, the lowdensity filler is quite expensive, 
and certainly a cheaper equivalent would be sought. The optimization 
aids in this, also, since the effect of a change in filler cost on formulation cost 
can be calculated. 

In  all of the example cases, the optimum occurred outside the region of 
the experimental design. Since this requires extrapolation of the constraint 
equations, the optima are only approximations to the true values. If a 
more accurate optimum is required, further experimental work in the region 
of approximate optimum must be done. However, this requires less effort 
than that required for an exhaustive investigation of the entire experimental 
space. 

In summary, application of optimization techniques yields approximate 
optimum values for various applications, and the constraint equations per- 
mit some extrapolation outside the experimental region if their form is rea- 
sonable. Efforts to define property requirements for an application are 
simplified by analysis of the active constraints, since the active constraints 
automatically enumerate the limiting properties. Even if the limiting 
property can not be changed, the active constraint function indicates which 
filler should be excluded. Further, some direction is provided for screening 
of possibly substitutes for the excluded filler. Thus, the optimization 
method can be used to locate an accurate optimum within the experi- 
mental region, to approximate an optimum outside the experimental region, 
or to provide direction for sequential experimental development. 
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